Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
J Am Soc Nephrol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709562

RESUMEN

BACKGROUND: APOL1 high-risk variants contribute to kidney disease among African-ancestry individuals. We sought to describe cell-specific APOL1 variants-induced pathways using two mouse models. METHODS: We characterized bacterial artificial chromosome (BAC)/APOL1 transgenic mice crossed with HIV-associated nephropathy (HIVAN) Tg26 mice and BAC/APOL1 transgenic mice given interferon-γ. RESULTS: Both mouse models showed more severe glomerular disease in APOL1-G1 compared to APOL1-G0 mice. Bulk RNA-seq of HIVAN model-glomeruli identified synergistic podocyte-damaging pathways activated by APOL1-G1 and by the HIV transgene. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially-expressed genes as a function of APOL1 alleles. Shared activated pathways, e.g. mTOR, and differentially-expressed genes, e.g. Ccn2, in podocytes in both models suggest novel markers of APOL1-associated kidney disease. HIVAN mouse-model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis glomerular RNA-seq data. Differential effects of the APOL1-G1 variant on the eukaryotic Initiation factor-2 pathway highlighted differences between the two models. CONCLUSIONS: These findings in two mouse models demonstrated both shared and distinct cell type-specific transcriptomic signatures induced by APOL1 variants. These findings suggest novel therapeutic opportunities for APOL1 glomerulopathies.

3.
Cancers (Basel) ; 16(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38398178

RESUMEN

Merkel cell carcinoma (MCC) and small cell lung cancer (SCLC) can be histologically similar. Immunohistochemistry (IHC) for cytokeratin 20 (CK20) and thyroid transcription factor 1 (TTF-1) are commonly used to differentiate MCC from SCLC; however, these markers have limited sensitivity and specificity. To identify new diagnostic markers, we performed differential gene expression analysis on transcriptome data from MCC and SCLC tumors. Candidate markers included atonal BHLH transcription factor 1 (ATOH1) and transcription factor AP-2ß (TFAP2B) for MCC, as well as carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) for SCLC. Immunostaining for CK20, TTF-1, and new candidate markers was performed on 43 MCC and 59 SCLC samples. All three MCC markers were sensitive and specific, with CK20 and ATOH1 staining 43/43 (100%) MCC and 0/59 (0%) SCLC cases and TFAP2B staining 40/43 (93%) MCC and 0/59 (0%) SCLC cases. TTF-1 stained 47/59 (80%) SCLC and 1/43 (2%) MCC cases. CEACAM6 stained 49/59 (83%) SCLC and 0/43 (0%) MCC cases. Combining CEACAM6 and TTF-1 increased SCLC detection sensitivity to 93% and specificity to 98%. These data suggest that ATOH1, TFAP2B, and CEACAM6 should be explored as markers to differentiate MCC and SCLC.

4.
Hepatology ; 79(4): 768-779, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725716

RESUMEN

BACKGROUND AND AIMS: The fitness and viability of a tumor ecosystem are influenced by the spatial organization of its cells. We aimed to study the structure, architecture, and cell-cell dynamics of the heterogeneous liver cancer tumor microenvironment using spatially resolved multiplexed imaging. APPROACH AND RESULTS: We performed co-detection by indexing multiplexed immunofluorescence imaging on 68 HCC biopsies from Thai patients [(Thailand Initiative in Genomics and Expression Research for Liver Cancer (TIGER-LC)] as a discovery cohort, and then validated the results in an additional 190 HCC biopsies from Chinese patients [Liver Cancer Institute (LCI)]. We segmented and annotated 117,270 and 465,632 cells from the TIGER-LC and LCI cohorts, respectively. We observed 4 patient groups of TIGER-LC (IC1, IC2, IC3, and IC4) with distinct tumor-immune cellular interaction patterns. In addition, patients from IC2 and IC4 had much better overall survival than those from IC1 and IC3. Noticeably, tumor and CD8 + T-cell interactions were strongly enriched in IC2, the group with the best patient outcomes. The close proximity between the tumor and CD8 + T cells was a strong predictor of patient outcome in both the TIGER-LC and the LCI cohorts. Bulk transcriptomic data from 51 of the 68 HCC cases were used to determine tumor-specific gene expression features of our classified subtypes. Moreover, we observed that the presence of immune spatial neighborhoods in HCC as a measure of overall immune infiltration is linked to better patient prognosis. CONCLUSIONS: Highly multiplexed imaging analysis of liver cancer reveals tumor-immune cellular heterogeneity within spatial contexts, such as tumor and CD8 + T-cell interactions, which may predict patient survival.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Ecosistema , Pronóstico , Perfilación de la Expresión Génica , Microambiente Tumoral , Linfocitos T CD8-positivos
5.
J Histochem Cytochem ; 71(10): 527-528, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37740707
6.
J Pathol ; 260(5): 514-532, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37608771

RESUMEN

Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature, summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias del Colon , Humanos , Biomarcadores , Benchmarking , Linfocitos Infiltrantes de Tumor , Análisis Espacial , Microambiente Tumoral
7.
Pathogens ; 12(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513779

RESUMEN

Bacterial and fungal co-infections are reported complications of coronavirus disease 2019 (COVID-19) in critically ill patients but may go unrecognized premortem due to diagnostic limitations. We compared the premortem with the postmortem detection of pulmonary co-infections in 55 fatal COVID-19 cases from March 2020 to March 2021. The concordance in the premortem versus the postmortem diagnoses and the pathogen identification were evaluated. Premortem pulmonary co-infections were extracted from medical charts while applying standard diagnostic definitions. Postmortem co-infection was defined by compatible lung histopathology with or without the detection of an organism in tissue by bacterial or fungal staining, or polymerase chain reaction (PCR) with broad-range bacterial and fungal primers. Pulmonary co-infection was detected premortem in significantly fewer cases (15/55, 27%) than were detected postmortem (36/55, 65%; p < 0.0001). Among cases in which co-infection was detected postmortem by histopathology, an organism was identified in 27/36 (75%) of cases. Pseudomonas, Enterobacterales, and Staphylococcus aureus were the most frequently identified bacteria both premortem and postmortem. Invasive pulmonary fungal infection was detected in five cases postmortem, but in no cases premortem. According to the univariate analyses, the patients with undiagnosed pulmonary co-infection had significantly shorter hospital (p = 0.0012) and intensive care unit (p = 0.0006) stays and significantly fewer extra-pulmonary infections (p = 0.0021). Bacterial and fungal pulmonary co-infection are under-recognized complications in critically ill patients with COVID-19.

8.
Front Med (Lausanne) ; 10: 1187420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484839

RESUMEN

Importance: Multisystem inflammatory syndrome in adults (MIS-A) is a poorly understood complication of SARS-CoV-2 infection with significant morbidity and mortality. Objective: Identify clinical, immunological, and histopathologic features of MIS-A to improve understanding of the pathophysiology and approach to treatment. Design: Three cases of MIS-A following SARS-CoV-2 infection were clinically identified between October 2021 - March 2022 using the U.S. Centers for Disease Control and Prevention diagnostic criteria. Clinical, laboratory, imaging, and tissue data were assessed. Findings: All three patients developed acute onset cardiogenic shock and demonstrated elevated inflammatory biomarkers at the time of hospital admission that resolved over time. One case co-occurred with new onset Type 1 diabetes and sepsis. Retrospective analysis of myocardial tissue from one case identified SARS-CoV-2 RNA. All three patients fully recovered with standard of care interventions plus immunomodulatory therapy that included intravenous immunoglobulin, corticosteroids, and in two cases, anakinra. Conclusion: MIS-A is a severe post-acute sequela of COVID-19 characterized by systemic elevation of inflammatory biomarkers. In this series of three cases, we find that although clinical courses and co-existent diseases vary, even severe presentations have potential for full recovery with prompt recognition and treatment. In addition to cardiogenic shock, glucose intolerance, unmasking of autoimmune disease, and sepsis can be features of MIS-A, and SARS-CoV-2 myocarditis can lead to a similar clinical syndrome.

9.
Cell Death Dis ; 14(5): 319, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169743

RESUMEN

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1ß/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.


Asunto(s)
Interferón gamma , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Femenino , Humanos , Linfocitos T CD8-positivos , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Interferón gamma/genética , Interferón gamma/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
10.
Front Oncol ; 13: 1168710, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205196

RESUMEN

Introduction: Immunotherapy is an effective treatment for a subset of cancer patients, and expanding the benefits of immunotherapy to all cancer patients will require predictive biomarkers of response and immune-related adverse events (irAEs). To support correlative studies in immunotherapy clinical trials, we are developing highly validated assays for quantifying immunomodulatory proteins in human biospecimens. Methods: Here, we developed a panel of novel monoclonal antibodies and incorporated them into a novel, multiplexed, immuno-multiple reaction monitoring mass spectrometry (MRM-MS)-based proteomic assay targeting 49 proteotypic peptides representing 43 immunomodulatory proteins. Results and discussion: The multiplex assay was validated in human tissue and plasma matrices, where the linearity of quantification was >3 orders of magnitude with median interday CVs of 8.7% (tissue) and 10.1% (plasma). Proof-of-principle demonstration of the assay was conducted in plasma samples collected in clinical trials from lymphoma patients receiving an immune checkpoint inhibitor. We provide the assays and novel monoclonal antibodies as a publicly available resource for the biomedical community.

11.
Cell Rep Med ; 4(6): 101052, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37224815

RESUMEN

Primary liver cancer is a rising cause of cancer deaths in the US. Although immunotherapy with immune checkpoint inhibitors induces a potent response in a subset of patients, response rates vary among individuals. Predicting which patients will respond to immune checkpoint inhibitors is of great interest in the field. In a retrospective arm of the National Cancer Institute Cancers of the Liver: Accelerating Research of Immunotherapy by a Transdisciplinary Network (NCI-CLARITY) study, we use archived formalin-fixed, paraffin-embedded samples to profile the transcriptome and genomic alterations among 86 hepatocellular carcinoma and cholangiocarcinoma patients prior to and following immune checkpoint inhibitor treatment. Using supervised and unsupervised approaches, we identify stable molecular subtypes linked to overall survival and distinguished by two axes of aggressive tumor biology and microenvironmental features. Moreover, molecular responses to immune checkpoint inhibitor treatment differ between subtypes. Thus, patients with heterogeneous liver cancer may be stratified by molecular status indicative of treatment response to immune checkpoint inhibitors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estudios Retrospectivos , Inmunoterapia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Genómica
12.
Nat Commun ; 14(1): 1986, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031249

RESUMEN

Heterogeneous antigen expression is a key barrier influencing the activity of chimeric antigen receptor (CAR) T cells in solid tumors. Here, we develop CAR T cells targeting glypican-1 (GPC1), an oncofetal antigen expressed in pancreatic cancer. We report the generation of dromedary camel VHH nanobody (D4)-based CAR T cells targeting GPC1 and the optimization of the hinge (H) and transmembrane domain (TM) to improve activity. We find that a structurally rigid IgG4H and CD28TM domain brings the two D4 fragments in proximity, driving CAR dimerization and leading to enhanced T-cell signaling and tumor regression in pancreatic cancer models with low antigen density in female mice. Furthermore, single-cell-based proteomic and transcriptomic analysis of D4-IgG4H-CD28TM CAR T cells reveals specific genes (e.g., HMGB1) associated with high T-cell polyfunctionality. This study demonstrates the potential of VHH-based CAR T for pancreatic cancer therapy and provides an engineering strategy for developing potent CAR T cells targeting membrane-distal epitopes.


Asunto(s)
Antígenos CD28 , Neoplasias Pancreáticas , Femenino , Animales , Ratones , Antígenos CD28/metabolismo , Glipicanos/genética , Glipicanos/metabolismo , Inmunoterapia Adoptiva , Epítopos/metabolismo , Proteómica , Línea Celular Tumoral , Linfocitos T , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Receptores de Antígenos de Linfocitos T/metabolismo , Neoplasias Pancreáticas
13.
Res Sq ; 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37090574

RESUMEN

Background: Emerging data suggest that beyond the neoplastic parenchyma, the stromal microenvironment (SME) impacts tumor biology, including aggressiveness, metastatic potential, and response to treatment. However, the epidemiological determinants of SME biology remain poorly understood, more so among women of African ancestry who are disproportionately affected by aggressive breast cancer phenotypes. Methods: Within the Ghana Breast Health Study, a population-based case-control study in Ghana, we applied high-accuracy machine-learning algorithms to characterize biologically-relevant SME phenotypes, including tumor-stroma ratio (TSR (%); a metric of connective tissue stroma to tumor ratio) and tumor-associated stromal cellular density (Ta-SCD (%); a tissue biomarker that is reminiscent of chronic inflammation and wound repair response in breast cancer), on digitized H&E-stained sections from 792 breast cancer patients aged 17-84 years. Kruskal-Wallis tests and multivariable linear regression models were used to test associations between established breast cancer risk factors, tumor characteristics, and SME phenotypes. Results: Decreasing TSR and increasing Ta-SCD were strongly associated with aggressive, mostly high grade tumors (p-value < 0.001). Several etiologic factors were associated with Ta-SCD, but not TSR. Compared with nulliparous women [mean (standard deviation) = 28.9% (7.1%)], parous women [mean (standard deviation) = 31.3% (7.6%)] had statistically significantly higher levels of Ta-SCD (p-value = 0.01). Similarly, women with a positive family history of breast cancer [FHBC; mean (standard deviation) = 33.0% (7.5%)] had higher levels of Ta-SCD than those with no FHBC [mean (standard deviation) = 30.9% (7.6%); p-value = 0.01]. Conversely, increasing body size was associated with decreasing Ta-SCD [mean (standard deviation) = 32.0% (7.4%), 31.3% (7.3%), and 29.0% (8.0%) for slight, moderate, and large body sizes, respectively, p-value = 0.005]. These associations persisted and remained statistically significantly associated with Ta-SCD in mutually-adjusted multivariable linear regression models (p-value < 0.05). With the exception of body size, which was differentially associated with Ta-SCD by grade levels (p-heterogeneity = 0.04), associations between risk factors and Ta-SCD were not modified by tumor characteristics. Conclusions: Our findings raise the possibility that epidemiological factors may act via the SME to impact both risk and biology of breast cancers in this population, underscoring the need for more population-based research into the role of SME in multi-state breast carcinogenesis.

14.
bioRxiv ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37090576

RESUMEN

APOL1 high-risk variants partially explain the high kidney disease prevalence among African ancestry individuals. Many mechanisms have been reported in cell culture models, but few have been demonstrated in mouse models. Here we characterize two models: (1) HIV-associated nephropathy (HIVAN) Tg26 mice crossed with bacterial artificial chromosome (BAC)/APOL1 transgenic mice and (2) interferon-γ administered to BAC/APOL1 mice. Both models showed exacerbated glomerular disease in APOL1-G1 compared to APOL1-G0 mice. HIVAN model glomerular bulk RNA-seq identified synergistic podocyte-damaging pathways activated by the APOL1-G1 allele and by HIV transgenes. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially-expressed genes as a function of APOL1 alleles. Eukaryotic Initiation factor-2 pathway was the most activated pathway in the interferon-γ model and the most deactivated pathway in the HIVAN model. HIVAN mouse model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis (FSGS) glomerular bulk RNA-seq data. Furthermore, single-nuclear RNA-seq data from interferon-γ mouse model podocytes (in vivo) showed similarity to human FSGS single-cell RNA-seq data from urine podocytes (ex vivo) and from human podocyte cell lines (in vitro) using bulk RNA-seq. These data highlight differences in the transcriptional effects of the APOL1-G1 risk variant in a model specific manner. Shared differentially expressed genes in podocytes in both mouse models suggest possible novel glomerular damage markers in APOL1 variant-induced diseases. Transcription factor Zbtb16 was downregulated in podocytes and endothelial cells in both models, possibly contributing to glucocorticoid-resistance. In summary, these findings in two mouse models suggest both shared and distinct therapeutic opportunities for APOL1 glomerulopathies.

15.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066331

RESUMEN

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER-breast cancer has been established. However, mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγpresents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8 + T cells were spatially analyzed in aggressive ER-, TNBC, and HER2+ breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8 + T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8 + T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ+IL1ß/TNFα increased elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight of distinct neighborhoods where stroma-restricted CD8 + T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.

16.
J Histochem Cytochem ; 71(2): 87-101, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36869703

RESUMEN

Neutral buffered formalin (NBF) is the most common fixative in clinical applications. However, NBF damages proteins and nucleic acids, limiting the quality of proteomic and nucleic acid-based assays. Prior studies have demonstrated that BE70, a fixative of buffered 70% ethanol, has many benefits over NBF but the degradation of proteins and nucleic acids in archival paraffin blocks remain a challenge. Thus, we evaluated the addition of guanidinium salts to BE70 with the hypothesis that this may protect RNA and protein. Guanidinium salt supplemented BE70 (BE70G)-fixed tissue is comparable with that of BE70 via histology and immunohistochemistry. Western blot analysis also revealed that HSP70, AKT, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression signals in BE70G-fixed tissue were higher than those in BE70-fixed tissue. The quality of nucleic acids extracted from BE70G-fixed, paraffin-embedded tissue was also superior, and BE70G provides improved protein and RNA quality at shorter fixation times than its predecessors. The degradation of proteins, AKT and GAPDH, in archival tissue blocks is also decreased with the addition of guanidinium salt to BE70. In conclusion, BE70G fixative improves the quality of molecular analysis with more rapid fixation of tissue and enhanced long-term storage of paraffin blocks at room temperature for evaluation of protein epitopes.


Asunto(s)
Ácidos Nucleicos , Proteómica , Fijadores , Guanidina , Adhesión en Parafina , Parafina , Proteínas Proto-Oncogénicas c-akt , Formaldehído , ARN/análisis , Fijación del Tejido
17.
Am J Pathol ; 193(11): 1809-1816, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36963628

RESUMEN

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Autopsia , ARN Viral/análisis , Inflamación
18.
Nat Commun ; 14(1): 1502, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932076

RESUMEN

Neutrophilic inflammation is a hallmark of many monogenic autoinflammatory diseases; pathomechanisms that regulate extravasation of damaging immune cells into surrounding tissues are poorly understood. Here we identified three unrelated boys with perinatal-onset of neutrophilic cutaneous small vessel vasculitis and systemic inflammation. Two patients developed liver fibrosis in their first year of life. Next-generation sequencing identified two de novo truncating variants in the Src-family tyrosine kinase, LYN, p.Y508*, p.Q507* and a de novo missense variant, p.Y508F, that result in constitutive activation of Lyn kinase. Functional studies revealed increased expression of ICAM-1 on induced patient-derived endothelial cells (iECs) and of ß2-integrins on patient neutrophils that increase neutrophil adhesion and vascular transendothelial migration (TEM). Treatment with TNF inhibition improved systemic inflammation; and liver fibrosis resolved on treatment with the Src kinase inhibitor dasatinib. Our findings reveal a critical role for Lyn kinase in modulating inflammatory signals, regulating microvascular permeability and neutrophil recruitment, and in promoting hepatic fibrosis.


Asunto(s)
Células Endoteliales , Vasculitis , Familia-src Quinasas , Humanos , Dasatinib , Células Endoteliales/metabolismo , Inflamación/metabolismo , Neutrófilos/metabolismo , Fosforilación , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Vasculitis/genética
19.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36945458

RESUMEN

Hyponatremia and salt wasting is a common occurance in patients with HIV/AIDS, however, the understanding of its contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the expression level of the Slc12a3 gene, encoding the Na-Cl cotransporter, which is responsible for sodium reabsorption in distal nephron segments, we performed single-nucleus RNA sequencing of kidney cortices from three wild-type (WT) and three Vpr-transgenic (Vpr Tg) mice. The results showed that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05), and that in Vpr Tg mice, Slc12a3 expression was not different in DCT cell cluster. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT (P < 0.01). Immunohistochemistry demonstrated fewer Slc12a3+ Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis comparing Vpr Tg and WT in the DCT cluster showed Ier3, an inhibitor of apoptosis, to be the most downregulated gene. These observations demonstrate that the salt-wasting effect of Vpr in Vpr Tg mice is mediated by loss of Slc12a3+ Pvalb+ DCT1 segments via apoptosis dysregulation.

20.
Mol Cancer Res ; 21(4): 316-331, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790955

RESUMEN

Combinatorial molecular therapy in pancreatic ductal adenocarcinoma (PDAC) has yielded largely disappointing results in clinical testing to-date as a multitude of adaptive resistance mechanisms is making selection of patients via molecular markers that capture essential, intersecting signaling routes challenging. Here, we report the scaffolding protein connector enhancer of kinase suppressor of Ras 1 (CNKSR1) as mediator of resistance to MAPK (MEK) inhibition. MEK inhibition in CNKSR1high cancer cells induces translocation of CNKSR1 to the plasma membrane where the scaffolding protein interacts with and stabilizes the phosphorylated form of AKT. CNKSR1-mediated AKT activation following MEK inhibition was associated with increased cellular p-PRAS40 levels and reduced nuclear translocation and cellular levels of FoxO1, a negative regulator of AKT signaling. In clinical PDAC specimens, high cytoplasmatic CNKSR1 levels correlated with increased cellular phospho-AKT and mTOR levels. Pharmacological co-blockade of AKT and MEK ranked top in induced synergies with MEK inhibition in CNKSR1high pancreas cancer cells among other inhibitor combinations targeting known CNKSR1 signaling. In vivo, CNKSR1high pancreatic tumors treated with AKT and MEK inhibitors showed improved outcome in the combination arm compared with single-agent treatment, an effect not observed in CNKSR1low models.Our results identify CNKSR1 as regulator of adaptive resistance to MEK inhibition by promoting crosstalk to AKT signaling via a scaffolding function for the phosphorylated form of AKT. CNSKR1 expression might be a possible molecular marker to enrich patients for future AKT-MEK inhibitor precision medicine studies. IMPLICATIONS: The CNKSR1 scaffold, identified within an RNAi screen as a novel mediator of resistance to MEK inhibition in pancreas cancer, connects the MAPK pathway and AKT signaling and may be adopted as a biomarker to select patients for combined MEK AKT blockade.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos , Línea Celular Tumoral , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...